

Exor Linux BSP Development
User Manual

UM0013 (v1.11) – 30 Sep 2020 User Manual

The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders will be liable for damages.
All rights, including rights created by patent grant or registration of a utility model or design, are reserved. Technical data subject to change. All trademarks and
trade names appearing in this document are property of their respective owners. Copyright © 2015 Exor International SpA-Verona-Italy, All Rights Reserved.
Disclaimer Exor International SpA is providing this design, code, or information "as is." basis, without warranty of any kind, either expressed or implied,
including, without limitation, warranties that the covered code is free of defects, merchantable, fit for a particular purpose or non-infringing. Each party bears the
entire risk as to the quality and performance of the original code, upgraded code, and modifications, to the extent originating with and provided by such party.
Should any covered code prove defective in any respect, you assume the cost of any resulting damages, necessary servicing, repair or correction. This
disclaimer of warranty constitutes an essential part of this license. No use of any covered code is authorized hereunder except subject to this disclaimer.

UM0013 (v1.10) – 30 Sep 2020
User Manual

www.exorint.com

Overview

This document will guide the user through the configuration and use of the Exor Linux BSP for
development purposes.

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 2/57

Table of Contents

1. Introduction ... 6

2. Boot sequence .. 7

3. System Settings .. 9

3.1 Sections overview .. 10
3.2 Management.. 11

3.2.1 Making a component backup .. 12

3.2.2 Updating a component .. 12

3.2 Services... 13

3.2.1 SSH Service ... 13

3.2.2 Avahi Daemon ... 13

3.2.3 Autorun scripts from external storage 13

4 Application Launcher ... 14

4.1 Kiosk mode .. 15
4.2 Available application packages .. 15
4.3 Creating custom packages .. 15

5 BSP structure .. 17

6 Using the serial port ... 20

6.1 Serial port pinout ... 20

6.1.1 Pinout for eSMART and eTOP6xxL series 20

6.1.2 Pinout for eXWare and eX7xx series 21

6.2 Configuring the serial port .. 21

6.2.1 Changing the operating mode ... 21

6.2.2 Configuring the port ... 22

7 USB tools .. 23

7.1 USB Updater ... 23

7.1.1 BSP update ... 23

7.1.2 BSP backup .. 24

7.2 Application Installer.. 24

8 Compiling applications for the target .. 25

8.1 Using the pre-configured VirtualBox VM .. 25

8.1.1 Setup a guest-host shared folder 27

8.1.2 Using the ready development environment 27

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 3/57

8.2 Using QtCreator IDE .. 28

8.2.1 Build configuration ... 28

8.2.2 Application deploy ... 32

9 Using the DBus HAL interface ... 35

9.1 Display... 35
9.2 Devices control .. 39
9.3 BSP Management ... 40
9.4 Network ... 42

9.4.1 Network JSON object specification 43

9.5 Application management ... 45

9.5.1 Application JSON object specification 49

9.6 Other ... 50

10 Other useful information.. 53

10.1 Device discovery .. 53
10.2 Enabling the serial console .. 53
10.3 Enabling root SSH login ... 54
10.4 Recovering from a damaged MainOS .. 55

11 Source code ... 56

11.1 Building the Linux kernel .. 56

11.1.1 Source code and configuration .. 56

11.1.2 Deploy ... 56

11.2 Building the U-Boot bootloader .. 57
11.3 BSP source code ... 57

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 4/57

Version History

Version Release date Changes

1.0 22/09/2017

First Version

1.1 4/04/2018

Added 9 Using the EPAD DBus interface
Added 10 Other useful information, Enabling the serial console

1.2 5/04/2018

Added 8.2 Using QtCreator IDE
Added 10.3 Enabling root SSH login
Added 3.2.1 SSH Service
Added 3.2.2 Services, Avahi Daemon

1.3 20/05/2018

Added 5 BSP structure
Added 10.1 Device discovery

1.4 5/10/2018

Added 9.3 BSP Management

1.5 08/10/2018

Added 11 Source code

1.6

9/10/2018
Added 10.4 Recovering from a damaged MainOS
Added 11.1.2 Deploy

1.7 24/01/2019

Updated device list in 6 Using the serial port
10.4 Recovering from a damaged MainOS revision

1.8

9/04/2020
9.3 BSP Management revision

1.9 22/06/2020

Added 4.1 Kiosk mode
Added 9.4 Network
Added 9.5 Application management

1.10

1/07/2020

Added 9.6 Other

1.11

30/09/2020 6.2.1 Changing the operating mode revision

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 5/57

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 6/57

1. Introduction

The goal of this document is to describe the relevant software components of the BSP installed in the
Linux based Exor products, guide the user through their use and help in getting started with custom
software development on such targets. Supported products by this manual include:

• eSMART series panels

• eTOP6xxL series panels

• eX7xx series panels

• JSmart series panels

• eXware series

• PLCM07

BSPs for each of the above targets are available for download here:

https://exorint.com/panel-bsp/

For datasheets, hardware specifications and other technical information, please refer to the hardware
section on our website:

https://exorint.com/product-category/products/#hardware-section

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 7/57

2. Boot sequence

At power on a progress bar and an optional splash image is shown on the screen. A custom splash
image can be set from System Settings.
During this phase it’s possible to interrupt the boot sequence to access the “tap-tap menu”, to do so
tap with the finger on the screen multiple times until a menu is shown on top of the screen:

By keeping now the finger on the screen the “RESTART: CONFIG OS” option will remain selected
and after 5 seconds the panel will reboot in the ConfigOS recovery mode (see).

If the screen is left untouched instead, the panel will proceed to the System Settings sub-menu:

Keeping the finger on the screen the user have the possibility to repeat the touchscreen calibration.

In either way the boot sequence is now interrupted meaning that no installed application will now
start. The following interface is shown instead:

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 8/57

The above screen is also shown by default when there are no applications to start. These are the
possible actions that can be taken from here:

• System Settings: Access the panel settings. From here it’s possible to read device
information and configure and update the BSP (see 3. System Settings).

• Startup Sequence: Install, uninstall, update and manage installed applications (see 4.
Application Launcher)

• Start HMI: Resume the boot sequence by starting all the enabled applications. This option is
not shown if there are no applications to start. The kiosk mode will however remain disabled (
see 4.1 kiosk mode)

At the bottom the IP address of the connected network interfaces are shown

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 9/57

3. System Settings

The panel System Settings interface can be accessed in two different ways:

• Locally by interrupting the boot sequence at power on and then pressing the “System
Settings” button.

• Remotely from a web browser.

To access System Settings from the browser make sure the panel is properly connected to your
network and reachable, then browse to this address:

https://<device-IP>/system_settings

A certificate sign warning may appear, on the Chrome browser it would look like this:

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 10/57

In this case click on “Advanced” and then “Proceed” to continue.

Authentication is required, the default username and password for the administrator is admin:admin.

3.1 Sections overview

Following is a brief description of each section that can be seen listed in the menu on the left:

• Language: Localization settings. The interface language and system keyboard layout and can
be selected here.

• System: Here some general system information is shown like Linux kernel version, uptime
and RAM usage.

• Logs: Log files can be set here to be persistent between reboots, and can be exported inside
a single .zip archive file.

• Date&Time: Set system time and timezone. A NTP service can also be enabled for automatic
time synchronization.

• Network: Set hostname, DNS and network interfaces configuration. By default DHCP is used,
here this can be disabled by setting a static IPs.

• Services: Enable, disable and configure services like SSH and VNC server.

• Plugins: Lists the hardware plugins currently connected to the device. Shown only if plugins
are supported.

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 11/57

• Management: Manage BSP components, updates and backups are possible.

• Display: Set screen orientation, backlight brightness and backlight timeout.

• Restart: Reboot the system. By choosing to reboot in ConfigOS the device will enter recovery
mode.

• Authentication: Manage device users and SSL certificates

3.2 Management

Under the Management section the list of the BSP components is shown:

This includes:

• MainOS and ConfigOS: The two device operating systems residing on two separated disk
partitions. The current installed version is displayed here.

• Settings: Disk partition where the device settings are stored. Clearing it will restore the device
configuration to factory defaults.

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 12/57

• Data: Disk partition where the applications are installed. Clearing it will delete all the
applications

• Splash Image: The image that is shown during the early boot phase.

• Xloader, Bootloader and FPGA: Other versioned components of the BSP. Some of these
may only be found on some platforms

3.2.1 Making a component backup

All the BSP components can be exported using the “Get” action. When accessing the System
Settings from a web browser files are directly downloaded on the PC.

3.2.2 Updating a component

The “Update” action can be used to install a newer version of a BSP component or to restore it using
an old backup.

Each update image should also come with a .md5 text file containing its md5 checksum. For
example, a typical MainOS update is given with the two files like these:

 un60-hsxx-mainos-1.0.303.rootfs.tar.gz
 un60-hsxx-mainos-1.0.303.rootfs.tar.gz.md5

For packages generated with the “Get” action the .md5 file should be generated by the user.

To perform an update the user will be asked to separately supply both the image file and .md5 file:

The .md5 file will be used to test files for integrity before the actual update. Some components may
require a system reboot to update, the progress of the process will be shown on screen.

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 13/57

3.2 Services

3.2.1 SSH Service

Both “user” and “admin” users can be used to login in SSH. Only the “admin” user can however gain
root privileges by using sudo or directly becoming root with:

$ sudo su

Direct SSH root login in not supported. For development purposes it’s however possible to
temporarily enable it by making few changes to the BSP (see 9.2 Enabling root SSH login)

3.2.2 Avahi Daemon

Avahi is a so called zero-configuration networking service, it enables programs to publish and
discover hosts and other services running on a local network by sending multicast DNS packets.

If two devices have this service enabled they can address each other using Avahi hostnames instead
of their IP addresses. The Avahi hostname is always set to the device hostname followed by “.local” (
ex. HMI-e62c.local). The current device hostname can be retrieved and changed in System Settings
under Network section.

On most Linux PC distributions Avahi service is usually already enabled by default while under
Windows installing the Bonjour service is required. The Bonjour installer for Windows can be
downloaded from the following link:

https://support.apple.com/kb/DL999?viewlocale=en_US&locale=en_US

Testing that everything works can be done with a simple ping:

$ ping <deviceHostname>.local

In order to just obtain the list of the devices connected on the local network it also possible to use the
built-in discovery system without using Avahi (see 10.1 Device discovery)

3.2.3 Autorun scripts from external storage

Enabling this option allows to automatically execute applications from a USB drive. A bash script
named “autoexec.sh” needs to be placed in the root of the USB drive, this script, if found, is executed
as soon the drive is plugged into the device.

The script will run with root privileges, for this reason it’s suggested to disable this option as soon it’s
no more needed. There are already some USB tools available that can be used for configuration,
updates and more (see 7. USB Tools).

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 14/57

4 Application Launcher

Applications are managed by the Application Launcher. Configuration can be accessed by
interrupting the boot sequence at power on and then pressing the “Startup Sequence” button.

The UI shows the complete list of all the currently installed applications on the left, under “Installed
Apps”, and the list of those that that are configured to automatically start at boot on the right, under
“Boot Sequence”. Entries can be moved around by drag-and-drop or by using the arrow buttons, this
can be used to enable/disable applications (move entries between left and right columns) and to
define the boot order (move entries up and down under the ”Boot Sequence” column)

To uninstall an application simply select the related entry, press “Uninstall” and wait for the process to
complete.

To install or update an application from an application package follow these steps instead:

• First the .zip package application should be made available to the devices. There are two
common ways to do this:

o Copy the package on a USB drive and plug it on the device.
o Copy the package via SCP. To do this the SSH service must be first enabled in

System Settings, “Services” -> “SSH Server”. Log in using the “admin” user (default
password is “admin”) then place the file in a read-write location such /home/admin.

• Press “Install” in the “Startup Sequence” UI. A file browser will be shown. A folder can be
opened with a double tap. Browse to the package location, select it and press “Ok”. If the file
is on a plugged USB drive it will be found in /mnt/usbmemory.

• Wait for the process to complete. Once finished a new application entry should appear in the
list.

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 15/57

As an alternative, it’s also possible to install a package using the USB Application Installer tool (see
7.2 Application Installer)

4.1 Kiosk mode

The device without any application installed will boot in the configuration menu but once the startup
sequence is populated with at least one application the device will be put in “kiosk” mode. In this case
applications in the startup sequence list will be executed and the application launcher will keep track of
each process. In order to ensure that the device remains functional the application launcher will
automatically reboot the device if it detects that all of the application processes have form some reason
ended.

If the boot is interrupted from the “tap-tap menu” (see 2. Boot Sequence) the kiosk mode will be forced
disabled and won’t be restored even if the boot sequence is launched using the “Start HMI” button. In
this case all application processes end the configuration menu will show up again instead.s

4.2 Available application packages

Some applications are available for download here:

http://download.exorembedded.net:8080/Public/ExorPanels/ApplicationPackages/

4.3 Creating custom packages

It is possible to generate an application package containing some custom software. All the packages
are required to contain in their root some specific files, most of them are bash scripts that are used by
the Launcher as handles to perform operations such starting and stopping the application.

To get started it’s suggested to download a demo application package named hmibrowser.zip which
will install a simple web browser on the panel:

http://download.exorembedded.net:8080/Public/ExorPanels/Other/JML_Demo/

The zip archive can be extracted and the files used as template, bash scripts have some additional
comments that should help understanding what they do.

This is the list of the required files:

• package.info: It’s an xml file that contains some application basic information:
o <name> The application name.
o <installationFolder> The name of the installation folder. The contents of the package

will be installed in /mnt/data/hmi/<installationFolder>.

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 16/57

o <version> Application version.

• run.sh: Bash script called by the Launcher to start the application. The script is expected to
start the application in background and then return. Here the Launcher should be notified
when the application is fully started and when it’s terminated, this is done by issuing two
different dbus calls. Check the demo files for the details.

• stop.sh: Bash script called by the Launcher to stop the application.

• uninstall.sh: Bash script called by the Launcher just before uninstalling the application. The
whole /mnt/data/hmi/<installationFolder> will be deleted so here it’s possible for example to
save some configuration files outside this folder for restoring them in a later installation.

• install.sh: Bash script called by the Launcher just after extracting the package. Here it’s
possible for example to check for a saved configuration and restore it. At the end the
Launcher should be notified that the installation is completed.

When creating a package it’s important to remember that the zip archive should directly
contain the above files in its root without any folder containing them.

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 17/57

5 BSP structure

The onboard eMMC is the primary boot and storage device. A number of partitions are defined to
contain two different Linux operating systems and to serve various other purposes. The MainOS is
the default operating system while the other one, called ConfigOS, is used for recovery. The
bootloader will automatically boot the recovery system after 3 failed boot attempts, form there the
user is able to access the System Settings and possibly restore the MainOS or other components.

Following is the list of all the eMMC partitions, the filesystem used is EXT4 with journaling.

• Factory Partition (/dev/mmcblk1p1)

The factory partition contains configuration parameters that either needs to be shared
between MainOS and ConfigOS or are considered machine factory settings independent of
the BSP:

o Screen orientation and calibration
o User passwords (Linux shadow file)
o Certificates
o BSP settings factory defaults

This partition is mounted read-only in /mnt/factory. It can not be managed from System
Settings, to update or backup this partition the USB Updater tool can be used instead (see
7.1 USB Updater).

• ConfigOS Partition (/dev/mmcblk1p2)

Recovery operating system partition. The ConfigOS is almost identical to the MainOS, to
ensure its reliability it’s made however to be volatile, every configuration change done here is
lost upon reboot.

The system may automatically reboot in ConfigOS to perform some operations like updating
the MainOS. When in MainOS the partition is mounted read-only in /mnt/configos.

• MainOS Partition (/dev/mmcblk1p3)

Main operating system partition. The MainOs is where applications run.
When in ConfigOS the partition is mounted read-only in /mnt/mainos.

• Etc Partition (/dev/mmcblk1p5)

In System Settings management section this partition is referred just as “Settings”. It initially
contains a copy of the contents of the MainOS /etc folder and it’s mounted read-write over it.
Basically all the BSP configuration parameters that are not saved in the factory partition can
be found here.

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 18/57

When settings are restored to defaults the partition is reinitialized with files from the underling
MainOS /etc folder.

• Data Partition (/dev/mmcblk1p6)

This partition is mounted read-write in /mnt/data and it’s where the user can store his files, the
Application Launcher also installs applications here in /mnt/data/hmi. The /home folder is
relocated on this partition (/mnt/data/home) and it’s therefore writable too.

When updating remotely, packages are temporarily stored here. For this reason it’s important
to make sure that at least 150MB of this partition are always left free.

This partitioning system has been defined this way to optimize reliability, data that it’s not required to
be writable is always kept read-only and BSP settings data are separated from application data.
Writing outside the data partition is not recommended, any changes made elsewhere could also be
lost after a BSP update.

Following is a diagram of the eMMC partitioning. All the above partitions reside on the first 2GB, the
second half is left unmanaged by Linux and can be used for optional other operating systems (ex.
Android) .

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 19/57

MBR +
MLO/Bootloader

eMMC (/dev/mmcblk1)

ConfigOS (recovery)
(rootFS + kernel)

MainOS (main)
(rootFS + kernel)

DATA FS
(user data + user apps)

 RAW

350 MB
EXT4 FS (RO)

500 MB
EXT4 FS (RO)

840 MB
EXT4 FS (RW)

Factory

ETC FS
64 MB
EXT4 FS (RW)

64 MB
EXT4 FS (RO)

p1

p2

p3

p5

p6

p4 : EXTENDED

subsequent partitions
are logical partitions
of p4 which is an
extended partition.

1830 MB
For Linux

Android OS

(preassigned space for
optional Android OS)

1980 MB

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 20/57

6 Using the serial port

The serial port in Linux can be used by accessing the correct /dev/ttyXX device node. The actual
name of the serial port device varies depending on the specific platform as shown below:

• eSMART, eX705 and eXware703 /dev/ttyO0

• eTOP6xxL /dev/ttyS0

• eX707/710/715/721, eXware707 /dev/ttymxc0

It’s also possible to make use of the /dev/com1 symlink which is always created to point to the correct
device and gives a platform independent way to access the serial port.

During development the serial port can also be used to get a console (see 10.1 Enabling the serial
console).

6.1 Serial port pinout

6.1.1 Pinout for eSMART and eTOP6xxL series

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 21/57

6.1.2 Pinout for eXWare and eX7xx series

6.2 Configuring the serial port

Serial ports may support working in different modes, refer to the device datasheet to know the list of
the supported modes. By default serial ports are always set to operate in RS232 115200n8.

6.2.1 Changing the operating mode

If supported, changing the operating mode can be done using the Linux TIOCSRS485 ioctl. Following
is a piece of C code that shows the use of this ioctl to set the serial port to work in RS485, the name
of the device below “/dev/ttyO0” should be changed accordingly.

fprintf(stderr, "\tOpen fd...");
 int fd = open("/dev/ttyO0", O_RDWR);

 if (fd < 0) {
 perror ("Open device failure");
 return -1;
 }

 fprintf(stderr, " done!\n");

fprintf(stderr, "\tEnable RS485 mode...");
 struct serial_rs485 rs485conf;

 if (ioctl(fd, TIOCGRS485, &rs485conf) < 0) {

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 22/57

perror ("ioctl failure");
return -2;

}

 rs485conf.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND;

 if (ioctl(fd, TIOCSRS485, &rs485conf) < 0) {
 perror ("ioctl failure");
 return -2;
 }

 fprintf(stderr, " done!\n");

The mode is determined by the definition of the rs485conf.flags flag that can be seen shown in bold in
the code above. Here are the definitions of this flag for the different modes:

• RS232 mode (default):
rs485conf.flags = 0;

• RS485 mode:
rs485conf.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND;

• RS422 mode:
rs485conf.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND |

SER_RS485_RX_DURING_TX;

6.2.2 Configuring the port

Port baud rate, parity and other properties can be set as usually done under Linux. Under a C/C++
software the family of functions defined in termios.h can be used, refer to the manual for more
information on this:

https://linux.die.net/man/3/termios

As a generic alternative way of doing this the “stty” command line tool, included in the BSP, can also
be used. For example this line will set the port /dev/ttyO0 to 115200 8o1 :

stty –F /dev/ttyO0 115200 cs8 parenb parodd

For more information on stty refer to its manual:

https://linux.die.net/man/1/stty

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 23/57

7 USB tools

These are tools that can be placed on a USB stick and automatically executed on the panel just by
plugging the drive. Some of them are available here:

http://download.exorembedded.net:8080/Public/ExorPanels/USBTools

When preparing an USB drive the only thing to remember is that files needs to be extracted so that the
“autoexec.sh” file is directly found in the drive’s root.

All the USB tools have the following features in common:

• If the device has a display the process status and progress is shown.

• If the operation was successful the buzzer is played 3 times in the end. If a failure occurred
instead, the buzzer is played with a 3s period until reboot.

• If required, the device will automatically reboot once the USB drive is unplugged.

• A log of the last execution is saved on the USB key inside the “lastRun.log” file.

In order to use these tools the “Autorun scripts from external storage” option needs to be enabled in
System Settings, “Services” section.

7.1 USB Updater

This tool can be used to update BSP components and generate backups just like it can be done from
System Settings. Tool’s behavior is partially determined by some option variables defined inside the
“src/config” configuration file.

The tool requires the user to authenticate using the admin user’s password if it has been changed from
the default. Authentication can be done automatically if the CFG_ADMIN_PASSWORD variable inside
the configuration file is set to the current admin password.

7.1.1 BSP update

The tool will update every BSP component for which an update package is found. Packages should
be placed inside the “src” folder together with their .md5 files and should be renamed in the following
way:

• mainos.tar.gz + *.md5 MainOS

• configos.tar.gz + *.md5 ConfigOs

• data.tar.gz + *.md5 Data partition

• settings.tar.gz + *.md5 Settings partition

• factory.tar.gz + *.md5 Factory partition

• u-boot.img + *.md5 Bootloader

• MLO.img + *.md5 Xloader (if supported)

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 24/57

• splashimage.bin Splash image

• fpga.bin FPGA (if supported)

By default, before starting updating, the signature of each update package is checked to verify its
compatibility with the platform, if the check fails the process will fail without any action taken. This
check can be turned off by setting CFG_CHECK_SIGNATURE to 0.

7.1.2 BSP backup

If CFG_ENABLE_BACKUP is set to 1 the tool will also do a BSP backup before updating.
CFG_BACKUP_COMPONENTS can be set to a space separated list of components to backup, valid
component names are:

• mainos MainOS rootfs tar.gz

• configos ConfigOS rootfs tar.gz

• data Data partition tar.gz

• settings Settings, etc partition tar.gz

• factory Factory partition tar.gz

• bootloader Bootloader binary

• xloader Xloader binary (if supported)

• splash Splash image (if found)

• fpga FPGA binary (if supported)

If no list is specified, the default is to backup everything except FPGA.

Generated files can be found in the USB drive, inside a folder named backup_<date>, this also includes
all the corresponding *.md5 files. These package files are compatible with the System Settings (see
3.2.2 Updating a component).

This feature can easily be used to clone devices starting from a single preconfigured panel:

• Configure a device with final versions of each BSP component and wanted panel settings,
applications, application settings, boot sequence etc.

• Use the tool to do a backup (CFG_ENABLE_BACKUP=1 without update packages)

• Disable the backup (CFG_ENABLE_BACKUP=0) and move all files from the generated
backup folder to the “src” folder.

The USB drive can now be used multiple times to configure other devices just like the original one.

7.2 Application Installer

This tool can be used to automatically install an Application Launcher package (see 4. Application
Launcher). The package to install should be placed along the other files renamed as either
“package.zip” or “UpdatePackage.zip”.

At the end of the operation the system will be automatically restarted.

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 25/57

8 Compiling applications for the target

The standard Yocto SDK containing the cross-compiler and all the necessary libraries is available for
download here:

http://download.exorembedded.net:8080/Public/ExorPanels/SDK/

The current version of the SDK is based on Yocto Dora 1.5.3, uses GCC 4.9 and comes with Qt 4.8
libraries. To use it a Linux machine is required, installation is as simple as executing the SDK installer
script:

$ chmod +x un60-hsxx-sdk-1.0.4.sh

 $ sudo ./un60-hsxx-sdk-1.0.4.sh

For further support on how to use the SDK it’s also possible to refer to the official Yocto Developer’s
Guide, in particular chapter 2, “Using the Standard SDK” :

https://www.yoctoproject.org/docs/2.1/sdk-manual/sdk-manual.html

8.1 Using the pre-configured VirtualBox VM

You can download the Exor’s VirtualBox development VM from here:

http://download.exorembedded.net:8080/Public/ExorPanels/VirtualBoxVM/

The virtual machine comes in the OVA (Open Virtualization Archive) format. To import it on VirtualBox
got to “File” -> “Import Appliance…”, select the downloaded .ova file and then click “Import”. At this
point VirtualBox will give you the opportunity to customize the VM, double-click on entries to edit them.

You will notice there are two network adapters, one is set to work in NAT mode while the second one
works in bridged mode, the virtual machine will always use the bridged interface if possible and fall
back to the other only if necessary. Adjust both adapters to work with the real network interface you
use to have access to internet. Note that if the bridged adapter is not correctly configured you won’t be
able to resolve the device hostname, its IP address has to be used in this case.

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 26/57

The default amount of RAM is set to 2GB but if possible we suggest to increase it to at least 4GB,
adjusting the number of CPU cores is also a good idea. When done click on “Import”. After importing
the box it will be possible to change VM settings again.

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 27/57

8.1.1 Setup a guest-host shared folder

We recommend configuring a shared folder between host and guest, it’s the easiest way to move files
from and to the VM. From VirtualBox right-click on Exor’s VM and select “Settings…”. Now go to
“Shared Folders” and click on the add button to the right. Configure as follow:

• Folder Path: choose the host folder to share with the virtual machine

• Folder Name: must be share.

• Read-only: leave unchecked.

• Auto mount: leave unchecked.

• Make Permanent: set checked.
The chosen folder will be available inside the virtual machine from /home/user/VM-Share, a link to this

location can be also found on the VM’s desktop.

8.1.2 Using the ready development environment

If you choose to use our VirtualBox here are some information on how to use the environment. The
Linux system used is based on Ubuntu 14.04, the default user is:

• username: user

• password: password

To run a command with root privileges you can use sudo, entering the password is not required.

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 28/57

8.2 Using QtCreator IDE

The provided Virtual Box VM already comes with the QtCreator IDE ready to use. The only configuration
step required in this case is to adjust the target device IP address for remote application deployment (
8.2.1 Build configuration, step 5).

We are now however going through the complete process of configuring the same environment from
scratch. This guide takes version 4.5.x of QtCreator as reference, a simple graphical installer can be
downloaded from here:

https://download.qt.io/official_releases/qtcreator/4.5/

The file to download is the Linux .run executable and can be started from shell:

$ chmod +x qt-creator-opensource-linux-x86_64-4.5.2.run

 $./qt-creator-opensource-linux-x86_64-4.5.2.run

It’s important to start QtCreator from a shell after having done the SDK environment source:

$ source /opt/exorintos/1.5.3/environment-setup-cortexa8hf-vfp-neon-poky-linux-gnueabi

 $ qtcreator

As an alternative it’s also possible to create a bash script containing the above two lines to start the
IDE more easily as it has been done on the VM.

Before proceeding with the IDE configuration make sure that the SDK has been installed on the system.

8.2.1 Build configuration

From the “Tools” menu, select “Options…” -> “Build & Run”, then follow these steps:

1) In the “Compilers” tab click on “Add” -> “GCC” -> “C” and select the cross compiler picking it
from the SDK installation folder. If the SDK has been installed in the default location the
correct path is: /opt/exorintos/1.5.3/sysroots/i686-pokysdk-linux/usr/bin/arm-

poky-linux-gnueabi/arm-poky-linux-gnueabi-gcc.

Optionally edit “Name” to give a more meaningful name for the entry, select “arm-linux-
generic-elf-32bit” as ABI and finally click “Apply”.

2) From the same tab now click “Add” -> “GCC” -> “C++” and select
/opt/exorintos/1.5.3/sysroots/i686-pokysdk-linux/usr/bin/arm-poky-linux-

gnueabi/arm-poky-linux-gnueabi-g++ instead. Again, select “arm-linux-generic-elf-32bit”

as ABI and click “Apply”

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 29/57

3) From “Debuggers” tab press “Add” and select gdb from the same directory. The default
location is: /opt/exorintos/1.5.3/sysroots/i686-pokysdk-linux/usr/bin/arm-poky-

linux-gnueabi/arm-poky-linux-gnueabi-gdb .

Optionally edit “Name”, then click “Apply”.

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 30/57

4) From “Qt Versions” tab, press “Add..”. The default path to select is:
/opt/exorintos/1.5.3/sysroots/i686-pokysdk-linux/usr/bin/qmake. QtCreator

should automatically recognize the Qt version selected. Press “Apply”.

5) This step is required for configuring automatic application deployment on the target.
Move to the “Devices” section. Here VM users will only need to adjust the IP address and the
password if it has been changed from the default. To define a new devices from scratch instead,
click on “Add..”, select “Generic Linux Device” and press “Start Wizard”. Fill in these
informations:

• Name: the device name, for example, Exor Device.

• Host name: enter the device IP address.

• Username: admin.

• Authentication type: set to “Password”.

• Password: admin’s default password is admin .

Click “Next” and then “Finish”. Qt Creator will attempt a test connection, if the device is already
powered on and reachable everything should be ok.

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 31/57

6) Finally move again to the“Kits” tab. Combine all pieces together in a new kit. Click “Add” and
fill in as follows:

• Name: choose a name for the kit.

• Device Type: select “Generic Linux Device”.

• Device: select the device configured in 5).

• Sysroot: if the SDK is installed in the default location, the path to select is:
/opt/exorintos/1.5.3/sysroots/i686-pokysdk-linux/usr/bin/qmake

• Compiler: select C and C++ compilers by name as configured in 1) and 2).

• Debugger: select debugger by name as configured in 3).

• Qt version: select qt version added in 4).

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 32/57

8.2.2 Application deploy

Before starting here, make sure a that QtCreator has been correctly configured for application
deployment and that the device is reachable. QtCreator will install and run the software over SSH so
make also sure that it’s enabled on the device from System Settings, “Services” -> “SSH Service”.

1) First, let’s create a dummy Qt project. Select “File” -> “New File or Project…” -> “Qt Widgets
Application” and click “Choose”. Enter a project name, press “Next”. Make sure that in the “Kit
Selection” wizard dialog the SDK kit for the target is selected.

2) Make sure the target kit the one currently in use by checking in the menu on the left shown
below:

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 33/57

3) Click on “Projects” in the menu on the left and then “Run” as shown in the screenshot below.

Scroll down to the “Run Environment” options, press “Add” and define a variable DISPLAY with

value :0 .

4) Now edit the .pro project file to add these two lines:

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 34/57

target.path = /home/admin/

 INSTALLS += target

This will define where the application will be installed on the device (/home/admin)

5) Finally press the green play button in the menu on the left or use the “Ctrl+R” shortcut. QtCreator

should compile the application and an empty Qt window should appear on the device.

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 35/57

9 Using the DBus HAL interface

For device configuration, hardware peripherals access and application management the
com.exor.EPAD and com.exor.JMLauncher dbus interfaces can be used. Custom applications running
on the target can use these for a better integration with the device.

Dbus requests can also be sent using the dbus-send tool. For each method listed below a command
line that can be used to call it is also given.

9.1 Display

Object Path: /Backlight

Method: com.exor.EPAD.Backlight.setBacklightTimeout

Input: STR displayName Can be set to empty string “” to use the default

INT32 value Backlight timeout in minutes, 0 = always on [>=0]

Output: INT32 returnCode 0 = success

Description: Sets the inactivity timeout in minutes after which the backlight is turned off. The

backlight in automatically turned on again on user interaction.

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.EPAD "/Backlight"

com.exor.EPAD.Backlight.setBacklightTimeout string:"" int32:<value>

Object Path: /Backlight

Method: com.exor.EPAD.Backlight.backlightTimeout

Input: STR displayName Can be set to empty string “” to use the default

Output: INT32 value Backlight timeout in minutes

Description: Get the currently set inactivity timeout in minutes.

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.EPAD "/Backlight"

com.exor.EPAD.Backlight.backlightTimeout string:””

Object Path: /Backlight

Method: com.exor.EPAD.Backlight.saveBrightness

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 36/57

Input: INT32 value Brightness level [0-255]

Output: INT32 returnCode 0 = success.

Description: Set backlight brightness, 0 will set it to the minimum level without turning it off.

Dbus-send:

dbus-send --print-reply --system --dest=com.exor.EPAD "/Backlight"

com.exor.EPAD.Backlight.saveBrightness int32:<value>

Object Path: /Backlight

Method: com.exor.EPAD.Backlight.getBrightness

Output: INT32 value Brightness level [0-255], -1 if backlight is off

Description: Get the current backlight brightness.

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.EPAD "/Backlight"

com.exor.EPAD.Backlight.getBrightness

Object Path: /Backlight

Method: com.exor.EPAD.Backlight.offBrightness

Output: INT32 returnCode 0 = success

Description: Turns off the backlight. Use saveBrightness to turn it on again. After a reboot the

backlight will be on again at the last set brightness level.

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.EPAD "/Backlight"

com.exor.EPAD.Backlight.offBrightness

Object Path: /

Method: com.exor.EPAD.Backlight.setScreenOrientation

Input: INT32 value Screen orientation [0, 90, 180, 270]

Output: INT32 returnCode 0 = success.

Description: Set the screen orientation. Requires a reboot for changes to take effect.

Dbus-send:

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 37/57

$ dbus-send --print-reply --system --dest=com.exor.EPAD "/" com.exor.EPAD.setScreenOrientation

int32:<value>

Object Path: /

Method: com.exor.EPAD.Backlight.getScreenOrientation

Output: INT32 value Screen orientation [0, 90, 180, 270]

Description: Get the current screen orientation.

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.EPAD "/" com.exor.EPAD.getScreenOrientation

Object Path: /

Method: com.exor.EPAD.Backlight.setScreenSaturation

Input: INT32 red Red saturation [0-100]

INT32 green Green Saturation [0-100]

INT32 blu Blue Saturation [0-100]

Output: INT32 returnCode 0 = success.

Description: Set screen color saturation. Default values are 100,100,100.

Supported only on ex707/710/715/721 and JSmart.

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.EPAD "/" com.exor.EPAD.setScreenSaturation

int32:<red> int32:<green> int32:<blu>

Object Path: /

Method: com.exor.EPAD.Backlight.getScreenSaturation

Returns: INT32 red Red saturation [0-100]

INT32 green Green Saturation [0-100]

INT32 blu Blue Saturation [0-100]

Description: Get current screen color saturation.

Supported only on ex707/710/715/721 and JSmart.

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.EPAD "/" com.exor.EPAD.getScreenSaturation

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 38/57

Object Path: /

Method: com.exor.EPAD.Backlight.setScreenWhiteBalance

Input: INT32 value Screen white balance [-100 - 100]

Output: INT32 returnCode 0 = success.

Description: Set screen white balance. Default value is 0.

Supported only ex707/710/715/721 and JSmart.

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.EPAD "/"

com.exor.EPAD.setScreenWhiteBalance int32:<value>

Object Path: /

Method: com.exor.EPAD.Backlight.getScreenWhiteBalance

Output: INT32 value Screen white balance [-100 - 100]

Description: Get current screen white balance.

Supported only on ex707/710/715/721 and JSmart.

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.EPAD "/"

com.exor.EPAD.getScreenWhiteBalance

Object Path: /

Method: com.exor.EPAD.Backlight.setScreenHue

Input: INT32 value Screen hue [-100 - 100]

Output: INT32 returnCode 0 = success.

Description: Set screen hue. Default value is 0.

Supported only on ex707/710/715/721 and JSmart.

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.EPAD "/" com.exor.EPAD.setScreenHue

int32:<value>

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 39/57

Object Path: /

Method: com.exor.EPAD.Backlight.getScreenHue

Output: INT32 value Screen hue [-100 - 100]

Description: Get current screen hue. Default value is 0.

Supported only on ex707/710/715/721 and JSmart.

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.EPAD "/" com.exor.EPAD.getScreenHue

9.2 Devices control

Object Path: /Buzzer

Method: com.exor.EPAD.Buzzer.beep

Input: INT32 freq Buzzer frequency in Hz

INT32 time Duration in ms

Output: INT32 returnCode 0 = success.

Description: Turns on the buzzer for time ms at freq frequency.

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.EPAD "/" com.exor.EPAD.Buzzer.beep

int32:<freq> int32:<time>

Object Path: /Sensors

Method: com.exor.EPAD.Sensors.accelerometerAxis

Output: DOUBLE AccelX X axis in g units

DOUBLE AccelY Y axis in g units

DOUBLE AccelZ Z axis in g units

Description: Get the 3 axes values from the accelerometer if available.

Supported only on JSmart.

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.EPAD "/Sensors"

com.exor.EPAD.Sensors.accelerometerAxis

Object Path: /Sensors

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 40/57

Method: com.exor.EPAD.Sensors.temperature

Input: INT32 id Id of the temperature sensor [>=0]

Output: INT32 temp Temperature in Celsius degrees /10

Description: Read temperature form the specified sensor.

Supported only on JSmart.

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.EPAD "/Sensors"

com.exor.EPAD.Sensors.temperature

9.3 BSP Management

These APIs can be used to manage BSP components. All the operations below are performed
asynchronously.

Object Path: /

Method: com.exor.EPAD.downloadImage

Input: STR imgType BSP component to update

STR pkgFile Path of the update package file (*.tar.gz)

STR md5File Path of the md5 file (*.tar.gz.md5)

BOOL md5Check Whether to verify the package md5 using md5File

STR user Username to force an update

STR paswd Password to force an update

BOOL reboot Whether the device can reboot during the update

Description: Start a BSP component update. Valid imgType values are:

 mainos, configos, user (data partition), etc (settings partition), bootloader,

xloader, fpga and splash

md5File is a text file containing the package md5 checksum. If md5Check is set to

false, md5File can be set to an empty string.

If known, user and paswd can be set to force update operations that normally would

not be allowed. This includes BSP components downgrades and updates to

versions detected to be not compatible with the hardware.

On all the other cases these two values can be set to an empty string.

reboot can be set to true if the system is allowed to reboot the device to complete

the update. Some update operations require this parameter to be true otherwise

the process will fail immediately:

 MainOS update if the system is currently in MainOS

 ConfigOS update if the system in currently in ConfigOS

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 41/57

 Settings (etc) update if the system is currently in MainOS

 Data (user) update if the system is currently in MainOS

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.EPAD "/" com.exor.EPAD.downloadImage

string:"<imgType>" string:"<pkgFile>" string:"<md5File>" boolean:<md5Check> string:"<user>"

string:"<paswd>" boolean:<reboot>

Object Path: /

Method: com.exor.EPAD.uploadImage

Input: STR imgType BSP component to update

STR outFile Path for the output file

BOOL md5Check Currently unused

Description: Creates a backup of a BSP component. Valid imgType values are:

 mainos, configos, data, settings, bootloader, xloader, fpga and splash

The md5Check parameter is currently unused. To maintain the current behavior

on future BSP versions this should be set to false for now.

Settings and data backup can be performed only while the system is in ConfigOS.

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.EPAD "/" com.exor.EPAD.uploadImage

string:"<imgType>" string:"<outFile>" boolean:<md5Check>

Object Path: /

Method: com.exor.EPAD.formatImage

Input: STR imgType BSP component to update

BOOL reboot Whether the device can reboot during the update

Description: Clears or restores to defaults a BSP component. Valid imgType values are:

 data, settings, splash

If called for the settings imgType the device configuration is restored to factory

defaults. Settings restore and data clear require a device reboot if the system is

currently in MainOS, in these cases reboot needs to be set to true.

Dbus-send:

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 42/57

$ dbus-send --print-reply --system --dest=com.exor.EPAD "/" com.exor.EPAD.formatImage

string:"<imgType>" boolean:<reboot>

9.4 Network

Object Path: /NetworkManager

Method: com.exor.EPAD.NetworkManager.getConfigJSON

Output: STR config Network configuration in JSON format

Description: Returns all device network related information available in JSON format. See 9.4.1

Network JSON object specification

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.EPAD.NetworkManager "/NetworkManager"

com.exor.EPAD.NetworkManager.getConfigJSON

Object Path: /NetworkManager

Method: com.exor.EPAD.NetworkManager.setConfigJSON

Input: STR config Network configuration in JSON format

Description: Change network parameters as specified in the config JSON object string. Only

writable parameters can be specified in the object, see 9.3.1 Network JSON object

specification. The configuration would take effect only after a reboot, to apply

immediately call applyNewConfiguration.

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.EPAD.NetworkManager "/NetworkManager"

com.exor.EPAD.NetworkManager.getConfigJSON string:'<config>'

Examples of valid <config> JSON strings:

Set eth0 interface in DHCP mode:

'{ "interfaces" : [{ "name" : "eth0", "dhcp" : true }] }'

Set eth0 static and eth1 in DHCP mode:

'{ "interfaces" : [{ "name" : "eth0", "dhcp" : false, "netmask" : "255.255.0.0", "ip_address" : "192.168.20.50"
}, { "name" : "eth1", "dhcp" : true }] }'

Set device hostname:

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 43/57

'{ "hostname" : "HMI-Panel" }'

Enable bridge between eth0 and eth1 and set bridged interface in DHCP mode:

'{ "bridge" : { "enabled" : true, "list" : ["eth0", "eth1"] }, "interfaces" : [{ "name" : "br0", "dhcp" : true }]
}'

Disable bridge:

'{ "bridge" : { "enabled" : false } }'

Object Path: /NetworkManager

Method: com.exor.EPAD.NetworkManager.applyNewConfiguration

Input: BOOL async Execute operation asynchronously

Description: Reconfigure network parameters, applies a new configuration if changed. Method

returns immediately if async is true

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.EPAD.NetworkManager "/NetworkManager"

com.exor.EPAD.NetworkManager.getConfigJSON boolean:<async>

9.4.1 Network JSON object specification

Following is the full JSON object structure as returned by the getJSONConfig method. The same
structure needs to be followed when the object is passed to the setJSONConfig but in this case only
writable parameters can be specified.

{
 "version" : int,
 "hostname" : “string”,
 "dns" : {
 "servers" : [array/string],
 "search" : [array/string]
 },
 "bridge" : {
 "enabled" : boolean,
 "hw" : boolean,
 "interfaces" : [array/string],
 "list" : [array/string]
 },

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 44/57

 "wifi" : {
 "interfaces" : [array/interfaceObj]
 },
 "interfaces" : [array/interfaceObj]
}

Parameter Type Writeable Description

version String No API version. Currently set to 0

hostname string Yes Device hostname

dns.servers array/string Yes DNS server IPv4 addresses. Ex: [

“192.168.2.200”, “8.8.8.8”]

dns.search array/string Yes Search domains

bridge.enabled Boolean Yes When enabled the bridge interface “br0”

will be available for configuration

bridge.hw Boolean No Whether the device has hardware support

to work as a network switch

bridge.interfaces array/string No List of interfaces supporting bridge

bridge.list array/string Yes List of bridged interfaces if bridge is

enabled

wifi.interfaces array/interfaceObj Yes List of wifi interfaces

interfaces array/interfaceObj Yes List of ethernet interfaces

Finally the interfaceObj object structure:

{
 name" : "string",
 "mac_address" : "string",
 "ip_address" : "string",
 "netmask" : "string",
 "dhcp" : boolean,
 "configured" : boolean,
 "readonly" : boolean,
 "virtual" : boolean,
 "hidden" : boolean,
 “actual_netmask" : "string",
 "actual_ip_address" : "string"
}

Parameter Type Writeable Description

name string Yes Interface name. Ex. “eth0”.

In setConfigJSON this is specified as a selector for

the interface to configure

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 45/57

mac_address string No MAC address. Ex.””

ip_address string Yes Configured IPv4 address. Ex. “192.168.2.200”

netmask string Yes Configured netmask. Ex. “255.255.0.0”

dhcp boolean Yes Whether DHCP is used

configured boolean No Whether

Readonly boolean No Whether this interface configuration can be changed

Virtual boolean No Whether this is a physical interface

Hidden boolean No Whether this is can be managed from system

settings network configuration GUI

actual_netmask string No Current netmask used by the interface

actual_ip_address string No Current IPv4 address used by the interface

9.5 Application management

The application launcher also provides a dbus interface in order to allow to manage software installed
on the device.

Object Path: /

Method: com.exor.JMLauncher.infoJSON

Output: STR info Application information in JSON format

Description: Returns all application related information available in JSON format. See launcher

info structure in 9.5.1 Application JSON object specification

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.JMLauncher "/" com.exor.JMLauncher.infoJSON

Object Path: /

Method: com.exor.JMLauncher.install

Input: STR pkgPath Absolute path to the package file

 Optional:

BOOL async Execute operation asynchronously (default: false)

INT position Application position after installing (default: -2)

Output: INT32 returnCode 0 = success.

Description: Install the application package found in pkgPath, if async is true the method returns

immediately. position can have following values:

= 0 Don’t add the application to startup sequence

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 46/57

=-1 Add at the bottom of the startup sequence

=-2 Auto. Adds to startup sequence only if it’s empty

> 0 Add to startup sequence at the specified position

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.JMLauncher "/"

com.exor.JMLauncher.install string:”<pkgPath>” boolean:<async> int32:<position>

Signals:

During package installation dbus signals will be generated on the com.exor.JMLauncher interface to

give updates on the status of the operation:

installationSuccess Installation was successfully completed

installationFailed Installation failed

installationCanceled Installation canceled from local GUI by user

installationStatus(INT) Installation progress in percentage

licenseAgreementRequest The application is requiring the user to accept the license terms,

installation will resume after receiving the input

Object Path: /

Method: com.exor.JMLauncher.uninstall

Input: STR appName Application name

Output: INT32 returnCode 0 = success.

Description: Unistall application appName

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.JMLauncher "/"

com.exor.JMLauncher.uninstall string:”<appName>”

Object Path: /

Method: com.exor.JMLauncher.add

Input: STR appName Application name

 Optional:

INT32 position Application position (default = -1)

Output: INT32 returnCode 0 = success.

Description: Add application appName into startup sequence at position position:

= -1 Add at the bottom of the startup sequence

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 47/57

>0 Add to startup sequence at the specified position

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.JMLauncher "/" com.exor.JMLauncher.add

string:”<appName>” int32:<position>

Object Path: /

Method: com.exor.JMLauncher.remove

Input: STR appName Application name

Output: INT32 returnCode 0 = success.

Description: Remove application appName from startup sequence

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.JMLauncher "/" com.exor.JMLauncher.remove

string:”<appName>”

Object path /

Method: com.exor.JMLauncher.isKiosk

Output: BOOL kiosk Whether the device is in kiosk mode

Description: Returns true if the device is in “kiosk” mode (see 4.1 kiosk mode)

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.JMLauncher "/" com.exor.JMLauncher.isKiosk

Object path /

Method: com.exor.JMLauncher.exitKiosk

Input: BOOL save Whether to apply to next boot

Description: Exit kiosk mode (see 4.1 kiosk mode). If save is true the very next boot the device

will start with kiosk mode disabled.

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.JMLauncher "/"

com.exor.JMLauncher.exitKiosk boolean:<save>

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 48/57

Object path /

Method: com.exor.JMLauncher.enterKiosk

Input: BOOL save Whether to apply to next boot

Description: Enter kiosk mode (see 4.1 kiosk mode). If save is true the very next boot the device

will start with kiosk mode enabled (can undo a exitKiosk call).

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.JMLauncher "/"

com.exor.JMLauncher.enterKiosk boolean:<save>

Object path /

Method: com.exor.JMLauncher.startApp

Input: STR appName Application name

Description: Start application appName if not already executing. The application is not added in

the startup sequence

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.JMLauncher "/" com.exor.JMLauncher.startApp

string:”<appName>”

Object path /

Method: com.exor.JMLauncher.quitApp

Input: STR appName Application name

Description: Stop application appName if not already executing. The application is not removed

from startup sequence. Remember that if the device is in kiosk mode and all the

running applications are stopped the device will reboot (see 4.1 kiosk mode).

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.JMLauncher "/" com.exor.JMLauncher.quitApp

string:”<appName>”

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 49/57

Object path /

Method: com.exor.JMLauncher.restartApp

Input: STR appName Application name

Description: Restart application appName.

Dbus-send:

$ dbus-send --print-reply --system --dest=com.exor.JMLauncher "/" com.exor.JMLauncher.quitApp

string:”<appName>”

9.5.1 Application JSON object specification

Following is the full JSON object structure as returned by the JMLauncher’s infoJSON method:

{
 "kiosk" : bool,
 “status”: int.
 "apps" : [array/applicationObj]
}

Parameter Type Description

kiosk bool True if the device is in kiosk mode

status int Status code

Apps array/applicationObj List of installed applications

Status can have one of following values:

Name Value Description

MAINWINDOW -1 The configuration menu is shown

LOADING 0 Applications are being launched

LOADED 1 Startup sequence completed

DOWNLOAD 4 A package is being downloaded on the device

DOWNLOAD_FINISHED 5 Package downloaded

DOWNLOAD_FAILED 6 Package download failed

INSTALL 7 An application is being installed

INSTALL_FINISHED 8 Install completed successfully

INSTALL_FAILED 9 Install failed

INSTALL_FAILED_NO_SPACE 10 Install failed, not enough disk space

INSTALL_CANCELING 11 User requested to cancel installation

INSTALL_CANCELED 12 Install canceled

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 50/57

UNINSTALLING 13 An application is being uninstalled

UNINSTALLING_PREVIOUS 14 Removing old application before update

UNINSTALLING_FINISHED 15 Application removed

INCOMPLETE_INSTALL 16 Cleaning an incomplete

UPDATE 17 An application is begin updated

UPDATE_FINISHED 18 Application updated

UPDATE_FAILED 19 Update failed

UPDATE_FAILED_NO_SPACE 20 Update failed, not enough disk space

INSTALL_LICENSE 22 User is required to accept license terms

RESTARTING 23 Device needs to be rebooted

ApplicationObj JSON structure:

{

"name" : string,
"version" : string,
"enabled" : bool,
"folder" : string,
"order" : int,
"running" : bool

}

Parameter Type Description

name string Application name

version string Application version

enabled bool True if application is included in the startup sequence

folder string Installation folder name. The application is installed in

/mnt/data/hmi/<folder>

order int Position in the startup sequence (0 if disabled)

running bool True if the application is running on the device

9.6 Other

Object path /

Method: com.exor.FileBrowser.getOpenFileName

Input: STR dir Directory to show (default “/”)

ARR_STR fileFilters List of file types filters

ARR_STR nameFilters List of file name filters

STR message Dialog message

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 51/57

ARR_STR btnLabels Labels for buttons (default “Ok” and “Cancel”)

STR stylesheet CSS stylesheet

Description: Opens a fullscreen filebrowser dialog showing files in the dir directory, the message

string is shown on top. The user is allowed to browse the filesystem, press the

“Cancel” button to close the dialog or select a file and press “Ok”. Button labels can

be changed specifying the two strings in the btnLabels array. It is possible to restrict

files the user is able to select:

• fileFilters can list any value found in Qt “QDir::Filter” enum

(https://doc.qt.io/qt-5/qdir.html#Filter-enum), “QDir::” should be omitted (es.

“AllDirs”, “Files”).

• nameFilters can contain any string that the name of the file needs to match,

use of the wildcard * is allowed (es “*.zip” selects files with name ending

with “.zip”)

stylesheet can be used to change how dialog looks by using Qt stylesheet syntax

(https://doc.qt.io/Qt-5/stylesheet-syntax.html). To separately target the “Ok” and

“Cancel” buttons it’s possible to use “#okButton” and “#cancelButon” selectors.

Dbus-send:

$ dbus-send --print-reply --session --dest=com.exor.FileBrowser "/"

com.exor.FileBrowser.getOpenFileName string:”<dir>” array:string:<fileFilters>

array:string:<nameFilters> string:”<message>” array:string:<btnLabels>

string:”<stylesheet>”

Examples:

Open the filebrowser in “/mnt/data” and allow the user to choose an archive file to extract. Buttons

backround color is changed using CSS.

$ dbus-send --print-reply --session --dest=com.exor.FileBrowser "/"

com.exor.FileBrowser.getOpenFileName \

string:"/mnt/data" \

array:string:"AllDirs","Files","NoDot" \

array:string:"*.zip","*.rar","*.tar.gz","*.7z" \

string:"Please select an archive file to extract:" \

array:string:”Extract”,”Cancel” \

string:"#cancelButton,#okButton { background: #73CCF0; }"

Signals:

When the dialog is closed a signal is sent on the com.exor.FileBrowser interface:

done(STRING) Returns path of the file selected or empty string if operation in canceled

https://doc.qt.io/qt-5/qdir.html#Filter-enum
https://doc.qt.io/Qt-5/stylesheet-syntax.html

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 52/57

Object path /

Method: com.exor.FileBrowser.getSaveFileName

Input: STR dir Directory to show (default “/”)

STR fileName Default file name

BOOL warnOnExist Warn the user if files already exists

STR message Dialog message

ARR_STR btnLabels Labels for buttons (default “Ok” and “Cancel”)

STR stylesheet CSS stylesheet

Description: Opens a fullscreen filebrowser dialog the dir directory, the message string is shown

on top. The user is allowed to press the “Cancel” button to close the dialog or

browse to the destination directory, choose a file name (proposed name will be

fileName), and press “Ok”. If warnOnExist is true and the selected file already exists

the user will be asked if it’s ok to overwrite it.

Button labels can be changed specifying the two strings in the btnLabels array.

stylesheet can be used to change how dialog looks by using Qt stylesheet syntax

(https://doc.qt.io/Qt-5/stylesheet-syntax.html).

Dbus-send:

$ dbus-send --print-reply --session --dest=com.exor.FileBrowser "/"

com.exor.FileBrowser.getSaveFileName string:”<dir>” string:”<fileName>”

boolean:<warnOnExist> string:”<message>” array:string:<btnLabels> string:”<stylesheet>”

Signals:

When the dialog is closed a signal is sent on the com.exor.FileBrowser interface:

done(STRING) Returns path of the file to save or empty string if operation in canceled

https://doc.qt.io/Qt-5/stylesheet-syntax.html

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 53/57

10 Other useful information

10.1 Device discovery

The BSP does have a built-in discovery system. Devices respond to a broadcast discovery message
by communicating their IP address and hostname.

The source code of a Qt4 example using this system is available here:

http://download.exorembedded.net:8080/Public/ExorPanels/Other/SelfInfo/selfinfo_qt4_src.zip

10.2 Enabling the serial console

Having the serial console enabled it’s not a supported operating mode, however it could be useful for
debugging purposes during development.

It’s possible to enable it by accessing the device via SSH. Make sure the SSH Service is enabled, log
in with the admin user and type the following commands:

root permissions are required

 $ sudo su

The file resides on the rootfs /etc folder

 $ umount –l /etc

 $ mount –o remount,rw /

Open /etc/inittab with a text editor

 $ nano /etc/inittab

Inside /etc/inittab, line 31 needs to be uncommented and modified to specify the correct serial port
device name, check 5. Using the serial port for the name to use.

For example, if the correct device is /dev/ttymxc0, the line should be changed from:

O0:12345:respawn:/sbin/getty 115200 ttyO0

To:

O0:12345:respawn:/sbin/getty 115200 ttymxc0

To complete the operation save the file, sync the changes to disk and reboot:

$ sync

 $ reboot -f

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 54/57

Serial ports, by default, operate in RS232 115200n8.

After a BSP update the modified file will be overwritten and above changes have to be manually applied
again. Also it’s important to remember to disable the console before trying to use the serial port for any
other purpose.

10.3 Enabling root SSH login

SSH login as root user is disabled. One possibility to gain root privileges is to login as admin user and
then use sudo or become root with:

$ sudo su

However to write in some filesystem locations with SFTP or to execute an application as root remotely
from an IDE, direct root login can be useful.

Enabling it is not a supported configuration and should be done only for development purposes. It can
be done from a shell:

1) Open the /etc/ssh/sshd_config file with an editor:

$ sudo su

 $ nano /etc/ssh/sshd_config

Look for this line:

PermitRootLogin no

And change it to:

PermitRootLogin yes

2) Choose a password for the root user:

$ passwd root

3) Replace the shadow file in /mnt/factory and reboot

$ mount –o remount,rw /mnt/factory

 $ cp /etc/shadow /mnt/factory

 $ chown root:shadow /mnt/factory/shadow

 $ sync

 $ reboot -f

It should be now possible to login as root with the chosen password.

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 55/57

Please note that, after a BSP update or settings restore, changes to the /etc/ssh/sshd_config file will
be lost and have to be manually applied again.

10.4 Recovering from a damaged MainOS

During development it’s always possible to get things wrong to the point that the system may not boot
properly any more. In these cases it’s still possible to boot in recovery mode and have the MainOS
restored.

If the device’s boot sequence gets to the point where the loading bar is shown it should be possible to
reboot in ConfigOS from the tap-tap menu (see 2. Boot sequence). If this can not be done there are
other two possibilities to get to recovery mode:

1. The bootloader will automatically boot in ConfigOS after 3 failed attempts of booting the
MainOS. Power on/off the device waiting few seconds between reboots until the panel boots in
recovery mode.

2. The u-boot prompt can be accessed from the serial port by keeping pressed ctrl+c on the
console at early device power on. From there it is possible to ask the bootloader to load the
ConfigOS with this command:

 # run altbootcmd

Once in ConfigOS there are two ways the MainOS can be restored:

1. Update the MainOS from System Settings with an official package.
2. If the cause of the boot failing is known it’s possible to fix it from a SSH shell. When in ConfigOS

SSH is always disabled and needs to be enabled again from System Settings. The data partition
can be found in /mnt/data as always while the MainOS rootfs can be found mounted RO in
/mnt/mainos and can be remounted RW if needed.

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 56/57

11 Source code

BSP open source code can be obtained under request. Sources for the Linux kernel and U-Boot
bootloader for all our platforms are also publicly available on our GitHub account:

https://github.com/ExorEmbedded

11.1 Building the Linux kernel

11.1.1 Source code and configuration

Git source repository, branch and configuration vary depending on the specific platform:

 Repository Branch defconfig dtb

eSMART
https://github.com/ExorEmb

edded/linux-us01
ti-linux-3.12.y am33xxusom usom_eco.dtb

PLCM07
https://github.com/ExorEmb

edded/linux-us01
ti-linux-3.12.y am33xxusom usom_plcm07.dtb

eTop6xxL
https://github.com/ExorEmb

edded/linux-us02
4.1-LTS_us02_etop socfpgausom usom_etop6xx.dtb

eX705,

eXWare

https://github.com/ExorEmb

edded/linux-us01
ti-linux-3.12.y am33xxusom usom_etop705.dtb

eX707 / 710
https://github.com/ExorEmb

edded/linux-us03
master imx6usom usom_etop7xx.dtb

eX715 / 21
https://github.com/ExorEmb

edded/linux-us03
master Imx6usom usom_etop7xxq.dtb

JSmart05 / 07

/ 10

https://github.com/ExorEmb

edded/linux-us03
master imx6usom usom_jsmart.dtb

JSmart15 / 21
https://github.com/ExorEmb

edded/linux-us03
master imx6usom usom_jsmartq.dtb

11.1.2 Deploy

A built kernel can be deployed for testing by simply placing the files in the /boot folder. We highly
recommend to make a backup of the zImage and dtb files that would be otherwise overwritten. The
root folder is by default mounted read-only and needs to be remounted read-write before any file can
be replaced:

Exor Linux BSP Development User Manual

UM0013 (v1.11) – 30 Sep 2020 www.exorint.com 57/57

$ sudo su

 $ mount –o remount,rw /

If something goes wrong with the new kernel image chances are that the device will not boot at all. In
this case remember that it’s still possible to boot in ConfigOS to restore these files (see 10.4
Recovering from a damaged MainOS).

11.2 Building the U-Boot bootloader

Git source repository, branch and configuration vary depending on the specific platform:

 Repository Branch config

eSMART, PLCM07,

eX705, eXWare

https://github.com/ExorEmb

edded/uboot-us01
uboot2014.04_uS01 am335x_usom_config

eTop6xxL
https://github.com/ExorEmb

edded/uboot-us02
us02_etop us02_etop_config

eX707 / 710,

JSmart05 / 07 / 10

https://github.com/ExorEmb

edded/uboot-us01
uboot2014.04_uS01 mx6dl_usom_config

eX715 / 21,

JSmart15 / 21

https://github.com/ExorEmb

edded/uboot-us01
uboot2014.04_uS01 mx6q_usom_config

11.3 BSP source code

To get the full BSP related open source code and licensing information please refer to the following
web page:

http://oss.exorint.net

